
Deskilling HPL

Using an Evolutionary Algorithm to Automate Cluster

Benchmarking

Dominic Dunlop, Sébastien Varrette and Pascal Bouvry

CSC research unit, University of Luxembourg, Luxembourg
{Firstname.Lastname}@uni.lu

Abstract. The High-Performance Linpack (HPL) benchmark is the ac-
cepted standard for measuring the capacity of the world’s most powerful
computers, which are ranked twice yearly in the Top 500 List. Since just a
small deficit in performance can cost a computer several places, it is impor-
tant to tune the benchmark to obtain the best possible result. However, the
adjustment of HPL’s seventeen configuration parameters to obtain maximum
performance is a time-consuming task that must be performed by hand. In a
previous paper, we provided a preliminary study that proposed the tuning of
HPL parameters by means of an Evolutionary Algorithm. The approach was
validated on a small cluster hosted at the University of Luxembourg. In this
article, we extend this initial work by describing Acbea, a fully-automatic
benchmark tuning tool that performs both the configuration and installation
of HPL followed by an automatic search for optimized parameters that will
lead to the best benchmark results. Experiments have been conducted to
validate this tool on several clusters, exploiting in particular the Grid’5000
infrastructure.

1 Introduction

Statistics on high-performance computers are of major interest to manufacturers,
users, and potential users. The Top500 project [4] operates at a worldwide level
as a reference contest to evaluate the 500 most powerful computer systems. The
list is updated twice a year and the computers are ranked by their performance on
the long-established High-Performance LINPACK (HPL) [28] benchmark, despite
the existence of newer alternative benchmarks [9]. HPL is a software package that
solves a (random) dense linear system using double-precision (64 bit) floating-point
arithmetic on distributed-memory computers. Seventeen configuration parameters
should be tuned and adapted to the computing platform to obtain maximum per-
formance. Even though some guidelines exist to guide the search of the parameter
space (firstly from the authors of HPL themselves, and secondly in articles that dis-
cuss HPL tuning such as [7,30]), this is generally a tedious task that is performed by
hand. In a previous paper [8], we showed how an evolutionary algorithm (EA) may
be exploited to determine the best possible parameters in a nearly automatic way,
in order to maximize the results of the benchmark. The approach was validated on
a small cluster hosted at the University of Luxembourg.

In this article, we describe the extension of this approach into a framework called
Acbea (Automatic Cluster Benchmark with Evolutionary Algorithm), which pro-
vides a fully-automatic benchmark tuning tool based on an EA that explores the
parameter space with many small benchmark runs, delivering parameter combina-
tions that are likely to produce outstanding results in larger runs. The approach
may be used iteratively if necessary, progressively reducing the proportion of the
parameter space explored. This paper is organized as follows: §2 defines the problem

statement and recalls the approach proposed in our initial work. §3 describes the
various software elements that comprise the Acbea framework. §4 discusses scal-
ability issues while §5 describes the experiments conducted to validate the tool on
several clusters, exploiting in particular the Grid’5000 infrastructure [3]. Finally, §6
concludes this article and provides some perspectives.

2 Context & Problem Statement

HPL [28] solves a dense N by N system of linear equations A × x = b (divided
into blocks of size P ×Q) by Gaussian elimination with partial pivoting. As well as
N , P and Q, fourteen further parameters control HPL’s execution, and any system
administrator who has tried to evaluate the computing power of a cluster with HPL
can testify to the difficulty of manually tuning these parameters to maximize the
benchmark result. The problem is due to the size of the search space and the fact
that a single run can take more than half a day.

Yet this tuning is of crucial importance

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 s

ys
te

m
s

m
ov

in
g

do
w

n

Percentage decrease in HPL result

Fig. 1. Impact of HPL result reduction on
the Top500 rank

as illustrated in figure 1, based on statis-
tics from the latest Top500 list [4]. It
shows how many systems would lose
one place or more if their HPL result
were slightly decreased.
Our previous work [8] promoted the idea
that HPL can be seen as an objective

function for an Evolutionary Algorithm
(EA) in such a way that it faciliates
and automates the tuning process. EA
refers to a class of problem-solving tech-
niques based on the Darwinian theory
of evolution. A possible and acceptable
solution i.e. a member of the popula-

tion is called an individual. Each iteration (or generation) of an EA involves a set
of genetic operators randomly applied to the individuals together with a compet-
itive selection that weeds out poor individuals through the evaluation of a fitness

value that indicates their quality as a solution to the problem. More details on
EAs may be found in [15]. The EA in [8] is configured as follows. An individual
corresponds to a set of eligible parameters for HPL. Its fitness value is the bench-
mark result when running HPL on the cluster with those parameters. Our initial
study delegated the details of the evolutionary computation to Acovea, a frame-
work initially designed to investigate the optimum combination of command-line
flags for a compiler (Acovea stands for Analysis of Compiler Options via Evolu-

tionary Algorithm). Using an adapter to match HPL to the Acovea interface when
benchmarking a small cluster, spectacular results were obtained with little effort
compared to classical hand-tuning.

This paper extends our initial proposal in two directions. Firstly, the details
of the evaluation process to find the most suitable library are set out (see §3.1).
Secondly, we describe an all-in-one framework called Acbea (see §3.2) for bench-
marking the computing power of a cluster through HPL. This tool is designed to
download, build and launch HPL in such a way that the process of parameter tun-
ing is handled internally and sequentially, starting from a small problem size and
moving to the largest possible. Hopefully, this last configuration will produce the
best benchmark result for the computing platform. Acbea makes use of an EA to
automate nearly all tedious processes such that the interaction of the user is limited
to an initial setup, some manual tuning for the last step of the evaluation and finally
the collection of the ultimate result (see §3.3). As before, our approach is based on

the assumption that individuals that produce good results in small, short bench-
marks are likely to produce good results in larger, longer tests. This hypothesis
follows from practical observations and is discussed in §4.

3 Acbea Software Components

The software harness used in [8] was assembled quickly using scripting tools. As such,
it was difficult to run and to maintain, and suffered from a number of inefficiencies.
For example, the evaluation of each set of HPL parameters required a batch job
to be submitted to start a new instance of HPL on the cluster’s compute nodes.
Thus each evaluation incurred both batch submission and HPL start-up overhead.
For the follow-up work documented here, a more flexible, efficient and maintainable
package was developed from the ground up. The package was designed with the
following constraints in mind:

– Maximal portability. The software package should build and run in as many
unix-like environments as possible, and be able to utilize a choice of components
for the following elements:

• C and C++ compilation systems. GCC [31] and HP’s compilers [1] were used
in development, but commercial products such as Intel’s [2] can also be used.

• Batch job submission system. Development has been carried out exclusively
with OAR [6], but hooks are provided to allow alternative schedulers.

• BLAS (Basic Linear Algebra Subroutines) library implementation. We use
ATLAS [33] as a default, but alternative implementations such as Intel’s
Math kernel Library [2] or GotoBLAS[16] can be used.

• Message Passing Interface. OpenMPI [11] was mainly used, but alternatives
such as MPICH2 [22] or Intel’s MPI Library [2] are supported.

– Minimal prerequisites.

– Liberal licence terms.

– No modification in HPL source code. The source code of the program used to
run the final benchmark must used exactly as it appears in the HPL distribution
package, so as to make it clear that the result of the test is legitimate.

3.1 Choice of Evolutionary Algorithm Library

Thirteen evolutionary algorithm library packages, all written either in C or C++,
were evaluated against five criteria:

1. Portability. The packages were built in four environments: FreeBSD, HP/UX,
Linux and Mac OS X. Packages that built and passed their own test suites in
all environments were given a higher score. Points were deducted if the build
process was difficult and/or required additional packages.

2. MPI support. Two points were given to packages that included support for MPI.
This consideration ultimately turned out to be unimportant, as Acbea runs the
evolutionary algorithm in a single process on a cluster’s head node, and so does
not require MPI.

3. Currency. Packages having a recently-released revision were marked higher than
those that had not been updated for some time. The thinking behind this was
that a recent revision suggested the existence of an active development commu-
nity that would be able to provide support if necessary.

4. Maturity. The initial release date and the revision history of each package were
examined to judge its maturity. Packages that had been available for several
years and which had been regularly updated were marked higher than new
packages, or old packages that had seen few revisions.

Good Bundle Port- MPI Curr- Mat-
Package Ver. Date builds size ability support ency urity Size Total

Evocosm[24] 3.3.1 2008 5 532kB 4 0 5 5 4 18

GAlib[32] 2.4.7 2007 5 368kB 4 0 4 4 4 16

Open BEAGLE[14] 3.0.3 2007 5 4.8MB 4 0 4 5 3 16

PGAPack[26] 1.1 2008 5 548kB 4 2 3 3 4 16

EO[21] 1.0.1 2008 4 972kB 3 0 5 3 4 15

GAtoolbox[29] n.a. 2007 4 40kB 3 0 4 2 5 14

ParadisEO[5] 1.1 2008 4 20.5MB 3 2 5 3 0 13

BEAGLE Puppy[12] 0.1 2004 5 232KB 5 0 2 1 4 12

Push 3[20] 3.1.0 2006 1 332kB 1 0 3 3 4 11

SHARK[18] 2.1.3 2008 3 5.8MB 2 0 5 2 2 11

dBEAGLE[13] 0.9.2 2004 0 3.3MB 0 2 2 2 3 9

MOMHLib++[19] 1.10b 2004 0 1.6MB 0 0 2 3 3 8

TEA[10] 2.6.0 2004 0 148kB 0 0 2 2 4 8
Table 1. EA library evaluation

5. Size. Small packages were marked higher than large. It should be noted that
the large packages support a wide variety of heuristic optimization methods.
However, as it was not the aim of the research described here to test alternative
methods, this was not considered an advantage.

The result of the evaluation is shown in table 1. The Evocosm [24] package scored
highest, and so was chosen as a basis for Acbea. Evocosm implements a classical
evolutionary algorithm as described in [15]: individual experiments are described
by a genome made up of genes representing parameter values for the experiment;
genomes that produce good experimental results are more likely to be used in creat-
ing the genomes used in the next generation than those that produce poor results.
Each individual in the next generation is created by choosing two parents, and
selecting each gene in the new individual from one of the parents at random1. Indi-
vidual genes may also mutate to a value that differs from either of the parent genes.
Optionally, an elitist strategy may be used to preserve the best individuals. Addi-
tionally, Evocosm implements an island model i.e. it maintains several populations
that exchange some individuals periodically. Note that this library also underlies
the Acovea [23] framework used in our earlier work.

3.2 Acbea

Acbea consists of a suite of programs

Fig. 2. Acbea: evaluation of a population

that work together to automate the
benchmark process. The most impor-
tant of these is runacbea, which runs
on the head node of a cluster and
submits batch jobs for the cluster’s
compute nodes. The jobs are typically
handled by a batch job manager.
Runacbea’s XML-format configuration
file describes HPL’s parameters and
their allowable values. The file also
contains information about the batch
job manager and the implementation
of MPI that is to be used.
The program’s operation for a single
population of benchmark evaluations
is shown in figure 2. The sequence of

operations is repeated for each population in a generation, and the overall sequence

1 This differs from the classical concept of crossover in that no attempt is made to preserve
groups of genes that are adjacent to one another.

is repeated until a specified number of generations has been run. If sufficient com-
pute nodes are available, the task of fitness assessment for each population may be
shared among several parallel jobs, so speeding evaluation. Each batch of bench-
marks is run using MPI to launch multiple copies of dhpl, a customized variant
of HPL’ s xhpl benchmark program. While xhpl uses a short configuration file to
describe a series of related tests, dhpl uses a file of arbitrary length to define the
series of unrelated tests that represents all or part of a population. Conforming
to the constraints presented in §3, the HPL problem solution code is unchanged.
The result output format has been changed as little as possible. On terminating,
runacbea summarizes its findings and produces a number of output files. The first
contains a configuration for a subsequent run with a problem double the size on four
times the number of cores. As four times compute power is being applied to a prob-
lem having eight times the complexity, each benchmark will take almost twice as
long as those defined by the original configuration file. In order that the subsequent
run may explore only the more profitable parts of HPL’s parameter landscape, the
parameter values allowed by the new configuration file exclude those which appear
only in most poorly-performing 33% of individuals in the run. (This cut-off level
may be changed.) The remaining outputs are configuration files for xhpl, repre-
senting the parameters that produced the best-performing individual in the each
population of the final generation. These files may be used to run xhpl bench-
marks directly. The decision to host runacbea on the head node of a cluster may
be questioned, as the intention is to benchmark the compute nodes, while the main
task of the head node should be to run administrative housekeeping functions for
the cluster. In fact, runacbea may itself be viewed a housekeeping program: tests
show that it and its child processes consume perhaps five seconds of processor time
over an entire run, during which the compute nodes may clock up hundreds of hours.

3.3 The Benchmarking Process

The benchmarking process with Acbea involves the following steps:

1. Gather information about the target cluster: nodes, cores and memory per node,
MPI implementation, batch job manager . . .

2. Use the provided ten-sec-n utility to obtain a value of N that makes HPL run
for ten seconds on a single core . Let Nten sec be this value.

3. Edit the runacbea configuration file to create one suitable for testing all the
cores in a small group of nodes n — four has been found to be a reasonable
choice for n. The value of N in this file may be calculated using N4 nodes =
Nten sec × 0.7 × 3

√
compute cores. The 0.7 factor compensates for the fact that

no inter-node communication is used during the determination of Nten sec.
4. Optimize HPL configuration for a benchmark on the small group of nodes. In

this step, runacbea runs an EA on five populations of forty individuals each for
twenty generations. Each individual is evaluated in around ten seconds so this
step may take half a day if a single group of nodes is used. The evaluations may
be done in parallel over several groups to reduce the time required.

5. Use the best parameters found in step 4 for a new optimization run on groups
of nodes four times larger (i.e sixteen if step 4 used four), solving problems
of double the size: Nni nodes = 2i−1Nn nodes∀i ≥ 2. Repeat this step until you
reach a solution suitable for node groups having a size as near as possible to
(but not exceeding) the number of nodes in the cluster.

6. Use the best configuration found at the previous step for the final benchmark
evaluation on the full cluster. The problem size for this run can be calculated
from the cluster’s installed memory with the following formula:

Nfull theoretical ≃ 0.8
√

Total Memory Size in bytes × sizeof(double)
8

The perfect value of N should be manually adapted from Nfull theoretical by
monitoring the memory usage on the cluster nodes to avoid swapping. This is
an activity that Acbea does not currently automate. Each run of this last step
takes one hour on a cluster having up to 500 cores and 1–2 GiB of memory per
core. Note that it is the only step that requires full cluster reservation.

7. Choose the best result for publication as the HPL benchmark score.

4 Scalability

The methodology implemented by Acbea is based on two assumptions:

1. A single run of an experiment will produce a result that is representative of the
results of multiple runs of the same experiment.

2. HPL parameters that produce good results in small, short benchmarks are likely
also to produce good results in larger, longer tests.

If the first assumption is not true, the fitness values used by the EA may not be
correct, with the result that the next generation does not reflect the genomes of the
truly most fit individuals. This issue is investigated in §4.1. If the second assump-
tion is false, there is no point in trying to use small benchmarks to explore HPL’s
parameter space; large, long-running tests would be the only ones that could yield
useful information about full-cluster benchmarks. §4.2 reports on tests of scalability.

4.1 Individual Benchmark Repeatability

A series of tests was run on fifteen two-core nodes of the Chaos cluster (see table
2) to investigate the variability in the results obtained from repeated runs of the
same test. As figure 3 demonstrates, variance expressed as a percentage of the
result value drops rapidly at first, but the improvement becomes slower as run time
increases. This suggests that with this configuration, an N chosen to give a run
time of approximately twenty seconds provides a reasonable compromise between
the duration of an Acbea run (which typically entails 4,000 individual benchmarks)
and the expectation that a single result is representative2. In further tests (not
reported here), variability reduced (and, of course, execution time increased) as the
number of nodes assigned to the problem was reduced. Consequently, an execution
time of ten seconds is sufficient for benchmarks involving a small number of nodes.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70

S
td

. d
ev

. (
%

)

Execution time (seconds)

Fig. 3. Variance in results of repeated
tests

Fig. 4. The effect of a badly-sized test

An alternative way of interpreting the findings is that the problem must not
be too small for the number of cores allocated to solve it. If it is, communications
activity begins to dominate calculation, resulting in performance figures that are
both poor and highly variable. This is illustrated in figure 4, which shows the system

2 Better interconnect than Gigabit Ethernet was found to reduce variability.

CPU time used by a dual-core cluster node involved in solving the same problem
ten times, first on 32 cores, then on sixteen. In the 32 core case on the left, the
percentage of system time is higher, indicating that the problem is badly sized for
the larger number of cores.

4.2 Interdependence Between Parameters

Our earlier paper [8] reported an investigation into the effect of N , problem size,
on the optimum value of NB, block size, a parameter found to have a large effect
on performance. The conclusion was that the two were independent, with the result
that small problems could be used to determine an optimum value of NB that would
also be valid for large problems. The work did not investigate the scalability of other
parameter combinations, nor did it check whether the findings were specific to the
Intel platform, or to the Linux libraries and tools used. Further studies reported
here address these issues, and broadly confirm that the results of small benchmarks
may be used as a basis for larger experiments.

N versus NB. In order to check whether the earlier conclusion was true in gen-
eral, similar tests were run on other platforms and with a variety of BLAS
implementations. Space precludes reporting these in detail, but they confirmed
the original findings. Figure 5 shows representative results obtained with two
different BLAS libraries on a four-core HP/PA host running HP/UX.

Fig. 5. NB versus N on HP Precision Architecture

P, Q versus N. To divide work among a number of compute nodes, HPL config-
ures the nodes into a P ×Q matrix. The shape of the matrix affects communica-
tions patterns and volumes between particular pairs of nodes. An investigation
was carried out into whether a shape that was optimal for small problems was
also optimal for large. Figure 6 shows a sample of the results. Increasingly large
problems are solved while P and Q are varied, keeping their product, and HPL’s
other parameters constant. It can be seen that the ordering of the curves barely
changes as N is increased, suggesting that information gained from small prob-
lems about matrix shape can be applied in large problems. Because adjacent
curves do cross on occasions, Acbea includes new dimensions that are related
to the old when creating the configuration file for a subsequent run.

SWAPPING versus N. Studies were also carried out on several machines into
the scalability of the SWAPPING parameter, which determines when HPL
switches from one data-exchange strategy to another, and which has been ob-
served to have much less effect on benchmark performance than NB or P ×Q.
Again, the trials suggested that a SWAPPING value that produces good re-
sults in small benchmarks will also produce good results in large.

5 Cluster benchmarking

This section is concerned exclusively with the results of the Acbea package’s auto-
matic tuning of HPL parameters; while it would be instructive to compare autom-
atically-produced results with those obtained by other methods such hand-tuning,

 10

 20

 30

 40

 50

 60

 70

 80

 2000 4000 8000 16000

F
itn

es
s

(G
flo

ps
)

Problem size, N

P=2, Q=16
P=4, Q=8

P=1, Q=32
P=8, Q=4

P=16, Q=2
P=32, Q=1

Fig. 6. Relative performance of matrix shapes versus N

or the spreadsheet-assisted procedure proposed in [7], any such study must be the
subject of future work. Table 2 describes the clusters that were targeted and the re-
sults achieved. It has been remarked, for example in [25,27], that HPL is a good tool
for “shaking down” compute clusters. This was certainly found to be the case when
Acbea was built and run on a variety of hosts. Consequently, we are able to report
fewer final results here than might have been hoped. More complete descriptions of
the French systems that participate Grid’5000 may be found in [3].

Cluster CPU type/ Total Mem/ Inter- Gflops/
name Location speed (Ghz) cores core connect MPI cores

capricorne Lyon Opteron/2 112 1GiB 1GE, Myri-2000 MPICH 48/32

chaos-b Luxembourg Xeon/3.4 16 4GiB 1GE OpenMPI 55/16

chaos-k Luxembourg Pentium D/3.2 32 2GiB 1GE OpenMPI 98/30

chinquint Lille Xeon/2.8 368 1GiB Myri-10G OpenMPI 160/32

genepi Grenoble Xeon/2.5 272 1GiB 1GE MPICH 45/8

granduc Luxembourg Xeon/2 176 2GiB 1GE OpenMPI 671/168

violette Toulouse Opteron/2.2 114 1GiB 1GE OpenMPI 262/96
Table 2. Acbea target systems

Chaos-b, Luxembourg. Chaos-b consists of just two eight-core nodes. The full
Acbea procedure was run, and a benchmark score of 55.05 Gflops was obtained
with N = 25, 600, P = 1, Q = 16. This is a considerable improvement upon
the disappointing 26 Gflops reported for the same cluster in [8]. The reason
for this discrepancy is not known, although the current tests used a better-
optimized BLAS library. A study was also made of the repeatability of the
Acbea process: do repeated runs produce similar or identical recommendations
for optimum parameters? The results of four trials of the first optimization
phase were in broad agreement. For example, two of the trials gave 72, 96, and
104 as the allowed values for NB in the second phase. (The others gave just 72
and 96, and 72, 104 and 144 respectively.) Other parameter choices were also
similar or identical across the four runs. This suggests that the Acbea process
is repeatable — although see the discussion of problem sizing in 4.1.

Chaos-k, Luxembourg. This sixteen-node cluster of two-core nodes was exten-
sively benchmarked for [8], attaining 116 Gflops. One of its nodes was unavail-
able during the testing reported here. Also, a new and larger Linux kernel
made it impossible to use the N = 84, 000 value used in those tests. Conse-
quently, results are not comparable. After a full run of Acbea, the five resulting
xhpl configuration files were used to obtain a best result of 98.47 Gflops with
N = 80, 000, NB = 88, P = 3 and Q = 10. The parameters were derived from
those of the fifth-most-successful individual in the optimization run, suggesting
that the “best-of-best” individual does not always deliver parameters that are
optimum in a larger benchmark.

Granduc, Luxembourg. Currently the largest of the University of Luxembourg’s
clusters, granduc was able to run the full Acbea procedure. One node being
off-line, the final benchmarks were run on 21 nodes (168 cores), giving a best
result of 671 Gflops with N = 192, 000 (using almost all available memory),
NB = 112, P = 2 and Q = 84.

Capricorne, Lyon. The Capricorne cluster is used by Grid’5000 for experimen-
tal work, and was targeted as a test of Acbea portability because it differs in
three respects from the Luxembourg clusters: AMD rather than Intel processors;
MPICH[17] instead of OpenMPI; and Myriad high-speed interconnect in addi-
tion to gigabit Ethernet. Unfortunately, we were unable to configure MPICH
to use the Myriad for data transport, so fell back to using the slower, higher-
latency Ethernet. Poor figures were obtained from an initial Acbea run using
eight cores on four compute nodes: the best-performing individual benchmark
reached 15.33 Gflops. A second run targeting 32 cores on sixteen nodes obtained
a best result of 44.84 Gflops. Because of these disappointing figures, a final test
utilizing all cores was not run; the reason for the poor performance was investi-
gated instead. The cause of the problem was found to be incorrect allocation of
processes to nodes by MPICH: some nodes were over-subscribed, some under-,
and some had the correct number of processes. The reason for this behaviour
could not be determined, and the benchmarking attempt was abandoned.

Chinqchint, Lille. A recently-commissioned and powerful system having 368 cores
on 46 nodes with ten gigabit Myriad interconnect, chinquint proved too unre-
liable to obtain anything approaching a full-system benchmark. It was possible
to run two parallel four-node (32 core) tests for runacbea’s full twenty gen-
erations. The best individual test delivered an impressive benchmark result of
160.50 Gflops. This was almost twice the overall average of 83.11 Gflops in the
final generation. Such a discrepancy is unusual. Sadly, it was not possible to find
sixteen nodes reliable enough to run the next stage of the test, since it should
have been possible to obtain well over a teraflop from the whole cluster.

Genepi, Grenoble. Like capricorne (see above), genepi has MPICH installed
on its compute nodes. A first run of Acbea targeting the eight cores and using
eight parallel jobs yielded an average performance of 41.65 Gflops, with the
best individual benchmark achieving 44.78. By confining benchmarks to single
nodes, this configuration made essentially no use of the interconnect. Sadly,
several attempts to run the next stage of the Acbea process on 32 cores failed
to run to completion due to intermittent MPICH problems with secure login
between nodes. The experiment was consequently abandoned.

Violette, Toulouse. It was possible to run the complete Acbea process on vi-

olette using its installed OpenMPI package. Both stages of optimization per-
formed as expected, delivering five xhpl configuration files for final benchmark-
ing. As the cluster has 114 cores (of which some were unavailable) rather than
the 64 targeted by the configuration files, the P and Q parameters were ad-
justed to address 96 cores before final benchmarks were run using N = 97, 600,
a value that was found almost to saturate the nodes’ memory. A peak score of
262.3 Gflops was obtained from sixty evaluations derived from the parameters
of the five best-performing individuals in the second-stage optimization. As ex-
pected, the best result was obtained using the parameters of the “best-of-best”
individual. Surprisingly, it used a layout of P = 16, Q = 6, although over-square
matrices generally perform poorly.

6 Conclusions and Future Work

This paper has described how an evolutionary algorithm may be used to produce
competitive HPL benchmark results for a computing cluster without the need for

intimate knowledge of the benchmark program, or of the software needed to support
it. The Acbea package has proved to be portable to a number of systems, although
these have been fairly uniform in operating environment, batch job management
and so on. However, portability alone is not sufficient: the target system must be
sufficiently robust to support both the demanding benchmark and an evolutionary
harness that launches it many thousands of times during the course of an evaluation.
At the current state of development, Acbea still requires a fair amount of knowledge
on the part of its user. For example, is up to the user provide the parameters passed
to the MPI implementation, which can have a great effect on its performance, and
consequently on that of the benchmark as a whole. Files must also be edited by
hand to set up a starting problem size, and to define the node topology to be used
for the evolutionary process. This done, the user must step through the lengthy
procedure described in §3.3 in order to obtain a benchmark result. Future work will
be focused on increasing Acbea’s ease of use, and on using discovery techniques to
reduce the amount of information that must be supplied before a benchmark can
be run.

The focus of this paper has been on obtaining results: no attempt has been made
to compare Acbea’s results with figures that have been independently obtained by
hand-tuning or other methods. It would be instructive to make such comparisons in
the future. The work reported in §4 suggests that HPL’s other parameters are largely
orthogonal to N , the problem size, but does not suggest theoretical or physical
reasons as to why this might be the case. Also, all clusters tested to date have
provided a fully-interconnected communications topology, which strongly favours a
BCAST parameter of zero. Consequently, no information has been obtained as to
whether BCAST is scalable or not. Future work could potentially address both of
these issues.

The authors would like to thank the administrators and support staff of the
Grid’5000 project for their assistance.

References

1. HP C++. [Online] www.hp.com/go/c++.
2. Intel Software. [Online] software.intel.com/en-us.
3. The Grid5000 Project. [Online] www.grid5000.fr.
4. The Top500 project. [Online] www.top500.org.
5. S. Cahon, N. Melab, and E-G. Talbi. ParadisEO: A Framework for the Reusable

Design of Parallel and Distributed Metaheuristics. J. of Heuristics, 10(4):357–380,
May 2004.

6. N. Capit and al. A batch scheduler with high level components. In Cluster computing
and Grid 2005 (CCGrid05), 2005.

7. Microsoft Corporation. Building and Measuring the Performance of Windows HPC
Server 2008-Based Clusters for TOP500 Runs. Technical report, November 2008.

8. D. Dunlop, S. Varrette, and P. Bouvry. On the Use of a Genetic Algorithm in High
Performance Computer Benchmark Tuning. In IEEE International Symposium on
Performance Evaluation of Computer and Telecommunication Systems (SPECTS’08),
pages 105–113, Edinburgh, UK, June 2008.

9. R. Eigenmann, G. Gaertner, W. Jones, H. Saito, and B. Whitney. SPEC hpc2002:
The next high-performance computer benchmark. In ISHPC, pages 7–10, 2002.

10. M. Emmerich and al. TEA (Toolbox for Evolutionary Algorithms).
11. E. Gabriel et al. Open MPI: Goals, concept, and design of a next generation MPI

implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
pages 97–104, Budapest, Hungary, Sept 2004.

12. C. Gagné. BEAGLE Puppy. [Online] beagle.gel.ulaval.ca/puppy.
13. C. Gagné, M. Parizeau, and M. Dubreuil. Distributed BEAGLE: An Environment

for Parallel and Distributed Evolutionary Computations . In Proc. of the 17th Annual
International Symposium on High Performance Computing Systems and Applications
(HPCS) 2003, pages 201–208, May 11-14 2003.

14. C. Gagné and M. Parizeau. Genericity in evolutionary computation software tools:
Principles and case study. Intl J. on Artificial Intelligence Tools, 15(2):173–194, April
2006.

15. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, January 1989.

16. K. Goto and R. Van De Geijn. High-performance implementation of the level-3 BLAS.
ACM Trans. Math. Softw., 35(1):1–14, 2008.

17. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. High-performance, portable implemen-
tation of the MPI Message Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

18. C. Igel and al. SHARK. [Online] sourceforge.net/projects/shark-project.
19. A. Jaszkiewicz and G. Da֒browski. MOMH multiple-objective metaheuristics.
20. M. Keijzer and al. Push Programming Language.
21. M. Keijzer, J.J. Merelo, G. Romero, and M. Schoenauer. Evolving objects: A general

purpose evolutionary computation library. In 5th European Conference on Artificial
Evolution, pages 231–244, London, UK, 2002. Springer-Verlag.

22. Argonne National Laboratory. MPICH2: High-performance and Widely Portable MPI.
[Online] www.mcs.anl.gov/research/projects/mpich2.

23. S.R. Ladd. Acovea: Using Natural Selection to Investigate Software Complexities.
[Online] www.coyotegulch.com/products/acovea/, 2007.

24. S.R. Ladd. Evocosm: A C++ Framework for Evolutionary Computing. [Online] www.
coyotegulch.com/products/libevocosm/, 2007.

25. J. Levesque. Breakthrough Science on a Petaflop XT5. In Cray XT Workshop, 2009.
26. D. Levine. Users Guide to the PGAPack Parallel Genetic Algorithm Library. [Online]

ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9518.ps.Z, 1996.
27. T. Minyard and al. Experiences and Achievements in Deploying Ranger, the First

NSF “Path to Petascale” System. In TeraGrid’08, June 2008.
28. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary. HPL — A Portable Implementa-

tion of the High-Performance Linpack Benchmark for Distributed-Memory Computers.
[Online] www.netlib.org/benchmark/hpl/, Jan 2004.

29. K. Sastry. Single and Multiobjective Genetic Algorithm Toolbox in C++. [Online]
www.illigal.uiuc.edu/pub/papers/IlliGALs/2007016.pdf, 2007.

30. V. Sripathi and A. Krishnan. Analyze and optimize the HPL benchmark on x86-64
cluster. Technical report, North Carolina State University, 2008.

31. R.M. Stallman et al. Using GCC: The GNU Compiler Collection Reference Manual.
FSF, 2005.

32. M. Wall. GAlib — A C++ Library of Genetic Algorithm Components.
33. R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of

software and the ATLAS project. Parallel Computing, 27(1–2):3–35, Jan 2001.

