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Abstract
The High-Performance Linpack (HPL) [14] package is
a reference benchmark used worldwide to evaluate high-
performance computing platforms. Adjustment of HPL’s sev-
enteen tuning parameters to achieve maximum performance
is a time-consuming task that must be performed by hand. In
this paper, we show how a genetic algorithm may be exploited
to automatically determine the best parameters possible to
maximize the future results of the benchmark. Indeed we pro-
pose a GA based approach, even if we do not really specify a
particular GA as our investigation relies on the Acovea frame-
work [11], which managed repeated runs of the benchmark to
explore the very large space of parameter combinations on the
test-case cluster. This work opens the possibility of creating a
fully-automatic benchmark tuning tool.

1. INTRODUCTION
With the configuration of a new computing cluster, gen-

erally comes a desire to evaluate its performance against
other similar platforms, typically by measuring its floating-
point computing power. This desire led the University of Lux-
embourg to conduct a benchmark evaluation of a recently-
acquired Beowulf cluster i.e. a scalable-performance cluster
based on commodity hardware communicating over a pri-
vate system network, using open source software. The High-
Performance LINPACK (HPL) [14] is a software package that
solves a (random) dense linear system using double-precision
(64 bit) floating-point arithmetic on distributed-memory com-
puters. It can be regarded as a portable and freely-available
implementation of the High Performance Computing LIN-
PACK reference benchmark. The Top500 project [1], which
ranks and details the 500 most powerful publicly-known com-
puter systems in the world, continues to rely on HPL, despite
the development of alternative packages [6]. The adjustment
of HPL’s seventeen tuning parameters to achieve maximum
performance is a time-consuming task usually performed by
hand. In this paper, we show how a genetic algorithm ap-
proach can be exploited to automatically determine the best
parameters possible in order to maximize the future results of
the benchmark. While some independent literature exists on

the subject of tuning HPL’s parameters – see [4] and [17] for
instance, the application of a genetic algorithm to the problem
has not, to our knowledge, previously been reported.

This article is organized as follows: §2. presents the
HPL benchmark together with the general methodology used
throughout the experiments described in this paper. In partic-
ular, the Acovea framework is described in §2.1. as an imple-
mentation of a genetic algorithm adapted to HPL evaluation
(assuming the wrapping proposed in §2.2.). §3. outlines the
experiments conducted, first with hand-tuning (§3.1.), then
with Acovea (see §3.2.). Further improvements are explored
in §3.3. Finally, §4. provides some conclusions and perspec-
tives.

2. BENCHMARK DESCRIPTION AND
TUNING METHODOLOGY

Below is a description of the HPL’s Main Algorithm [14]

This software package solves a linear system of or-
der n: A× x = b by first computing the LU fac-
torization with row partial pivoting of the N-by-
N + 1 coefficient matrix [Ab] = [[L,U ]y]. Since the
lower triangular factor L is applied to b as the fac-
torization progresses, the solution x is obtained by
solving the upper triangular system U × x = y. The
lower triangular matrix L is left unpivoted and the
array of pivots is not returned.
The data is distributed onto a two-dimensional P-
by-Q grid of processes according to the block-
cyclic scheme to ensure “good” load balance as
well as the scalability of the algorithm. The N-by-
N +1 coefficient matrix is first logically partitioned
into NB-by-NB blocks (called tiles), that are cycli-
cally “dealt” onto the P-by-Q process grid. This is
done in both dimensions of the matrix.
The right-looking variant has been chosen for the
main loop of the LU factorization. This means that
at each iteration of the loop a panel of NB columns
is factorized, and the trailing submatrix is updated.
Note that this computation is thus logically parti-
tioned with the same block size NB that was used
for the data distribution.



The main factors that directly affect the benchmark perfor-
mance describe the way the tiles are defined and distributed,
i.e., the problem size, N, along with NB, P and Q. The under-
lying Linpack alternates between computation and communi-
cation when solving a system of equations. The work to be
done in the computation phases depends on the number and
size of the tiles to be solved while P and Q affect how the
workload is balanced across the system, and how efficiently
each tile can be processed. As problem sizes increase, the
amount of computation grows faster than the cost of com-
munication, and the impact of communication performance
diminishes accordingly. To really understand how those four
parameters are linked, a sample data distribution correspond-
ing to the HPL parameters N = 128, NB = 32, P = 3 and
Q = 1 is shown in Figure 1. Each tile in the matrix is there-
fore 32-by-32 in size and there are sixteen tiles to be cycli-
cally distributed across P×Q = 3 processes as illustrated.

Figure 1. P×Q grid of processes for good load balancing [14].

In addition to its main parameters, HPL provides thirteen
more that could also be significant. They are detailed in Ta-
ble 5. The parameters for a benchmark run are defined in
a configuration file (HPL.dat by default). Each run of the
benchmark may test several parameter combinations, report-
ing on the execution time required to solve the problem for
each parameter combination and the corresponding process-
ing speed in billions of floating-point operations per second
(Gflops). It is possible to determine some constraints on the
parameters directly. For instance, P×Q is generally equal
to the number of processing cores. As for N, HPL’s authors
suggest a simple dimensional analysis based on the cluster’s
volatile memory:

N ' 0.8

√
Total Memory Size in bytes× sizeof(double)

8

In practice, this factor of 0.8 is hard to achieve, as memory
paging strongly degrades performance once the factor value
of 0.5 is exceeded. (See §3.2.1.).

Precisely tuning all seventeen parameters requires several
HPL benchmark runs with optimization performed by hand
between each. For the work described in this paper, hand-
tuning was done in the initial experimentation described in

§3.1. While good results can often be obtained by adjusting
parameters by hand, there is always the suspicion that there
is some other combination that would give better results still.
The problem of exploring a large parameter space in order
to optimize for a particular goal — in this case, maximizing
floating point operations per second — is well-suited to the
use of a genetic algorithm (GA hereafter). The theory and im-
plementation of evolutionary algorithms are outside the scope
of this paper — for comprehensive references, see [8, 9]. In
this paper, the approach is validated through the Acovea [11]
framework, which implements a GA. It was applied to see if it
could discover parameter combinations that produced results
that equalled or bettered those achieved by hand. The exper-
iments conducted over this framework are detailed in §3.2.
and 3.3. The next section details Acovea, together with the
methodology used to adapt it to HPL configuration.

2.1. The Acovea framework
ACOVEA stands for Analysis of Compiler Options via

Evolutionary Algorithm. The purpose of the open-source
package is to investigate the optimum combination of
command-line flags for a compiler, given a particular goal for
the compiled program. Typical goals are to maximize execu-
tion speed or to minimize object code size. In the case of the
GNU Compiler Collection[15], the C compiler has more than
60 different flags that affect code optimization and generation
for a particular processor architecture. It is clearly impossi-
ble to explore all possible combinations exhaustively. Acovea
uses a GA, provided by the underlying Evoscosm library[12],
to heuristically evolve the set of flags that best optimizes for
the chosen goal. In practice, the runacovea harness reads pos-
sible flags and their allowed values from an XML configura-
tion file. It repeatedly compiles a test program, passing the
compiler a different set of command-line flags each time, and
then, for successful compiles, runs the resulting program. The
program passes back a metric (typically a run-time), which
runacovea uses to assess the effect of the flags. Figure 2 il-
lustrates this process.

runacovearunacovea compiler
compiled

test program

Choose 
parameters

Compile

Assess 
parameters

Run test

Check
status
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Return
status

Launch
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compiler

Figure 2. Acovea compiler flag testing process (single test).



Runacovea’s parameters may be varied, but default val-
ues were used for the work described in this paper. These
evaluate twenty generations, each having five populations of
twenty individuals (HPL benchmarks in the current applica-
tion), for a total of 4,000 individuals. These numbers are low
compared to those used in many applications of GAs, and
were probably chosen because the compilation step needed
to evaluate the objective function for each individual is time-
consuming. High-performance benchmarking is similarly ex-
pensive. Each individual is represented by vectors of bit flags
corresponding to values of command-line parameters, and is
randomly initialized while making sure that each possibility
for multi-valued (as opposed to continuously-variable) pa-
rameters is adequately represented. After each generation, the
fitness of each individual (in our case, the core HPL algorithm
run-time) is examined. The GA used in this paper is config-
ured with a crossover rate of 1 and a mutation rate of 0.01.
Additionally, an elitism strategy is applied with 5% of the
best individuals passing unchanged to the next generation.

When complete, runacovea reports the most successful
command line, and summarizes the effects of flags which
have statistically-significant good or bad effects. In particu-
lar, the best-of-best combination is provided (i.e the set of
parameters resulting in the best execution time).

2.2. Adapting Acovea for use with HPL
Although Acovea is specifically targeted at the manipu-

lation of compiler flags, varying HPL parameters is a sim-
ilar task. For the sake of simplicity, it was decided to cre-
ate a wrapper for HPL adapted to the model expected by
Acovea instead of building a new application-specific tool
based on the Evoscosm library. This wrapper behaves like a
compiler by accepting command-line flags. It converts those
command-line arguments to the corresponding configuration
file HPL.dat and produces a second program that Acovea can
run in order to obtain a performance metric. This second pro-
gram launches a single benchmark run using mpirun to acti-
vate the Message Passing Interface of the execution platform,
passing back to runacovea the run-time extracted from HPL’s
output. This process is schematically illustrated in Figure 3.

3. EXPERIMENTS
The experiments described in this article were conducted

on a Beowulf cluster located at the University of Luxem-
bourg. This cluster is composed of a front-end server, 18 com-
puting nodes and a NFS file server. The computing elements
are of two kinds: small nodes having a single dual-core pro-
cessor and large nodes with four dual-core processors. Ta-
ble 4 gives further details of the hardware configuration, to-
gether with the list of the installed software relevant for this
work. The nodes of the cluster are connected through a giga-
bit Ethernet switch. The Maximum Transmission Unit (MTU)

Figure 3. Acovea HPL benchmarking process.

is configured to be 1500 bits. In particular, jumbo frames are
not enabled.

The source code for HPL was downloaded and built
using one of the supplied sample Makefiles, namely
Make.Linux PII CBLAS, and the system’s default C com-
piler to produce a 32-bit executable, xhpl. The executable
linked to the dynamic ATLAS and CBLAS libraries. CBLAS
is a C interface to BLAS routines, a collection of basic lin-
ear algebra subprograms [5]. ATLAS (Automatically Tuned
Linearly Algebra Software) [16] is used to automatically ob-
tain the parameters for efficient linear algebra computations.
These two libraries take advantage of the SSE2 (Stream-
ing Single instruction, multiple data Extension, version 2)
floating-point acceleration available from the cluster’s Xeon
and Pentium M processors [10]. The xhpl executable ac-
cessed the MPI middleware interface of the cluster through
the OpenMPI library [7]. No attempt was made to improve
the performance of the binary code for the application or the
libraries, for example by recompiling with non-default com-
piler options or by creating 64-bit versions rather than the de-
fault 321; the benchmarking exercise described in this paper
concentrates solely on optimizing performance by varying the
parameters passed to the xhpl application.

3.1. First experiments based on hand-tuning
The initial hand-tuning on the cluster gave the results

shown in Table 1. The best result achieved was 84 Gflops,
that is 41.5% of the theoretical maximum, by utilizing all the
small nodes. Several observations can be made on the basis
of the initial tests:

• System performance metrics captured by Ganglia [13]

1Intel’s 64-bit processor model and parameter-passing conventions im-
prove on the older 32-bit versions, and can result in generated code that runs
faster, despite pointer length being doubled.



Nodes N NB P Q Gflops Effi-
(cores) Theo. Prac. ciency

Small (32) 8000 80 4 8 204.8 33 16.1%
Large (16) 20000 80 4 4 108.8 25 23.0%
Small (32) 20000 80 4 8 204.8 64 31.2%
Small (32) 64000 80 4 8 204.8 84 41.5%

Table 1. Results of initial “hand” testing.

showed that the most successful runs minimized net-
work traffic and maximized CPU user-mode cycles.

• The final small node test with N = 64000 used about half
the available memory on each node, suggesting that N
could not be increased much beyond this value without
incurring performance-degrading paging (see §3.2.1.).

• Results (not shown) of tests that attempted to use both
the large and the small nodes were unimpressive. This
issue is explored in §3.2.3.

3.2. Experiments based on GAs
The tests were run in two phases. First, Acovea was used to

establish optimum HPL parameters for a small problem size,
as several runs of the benchmark are required per generation
and the total execution time should be reasonable. In the sec-
ond step, the established parameters were used to establish
cluster performance for increasing problem sizes. Note that
this strategy assumes that the parameters that give best results
with the small problem sizes used while running the genetic
algorithm will continue to give optimal results when the prob-
lem size is considerably increased. This assumption was later
verified in the specific case of the NB parameter (see §3.3.),
but has not been verified in the general case. This experiment
ran on the cluster for three computing nodes configuration:
first using only the small nodes (32 cores); second, with only
the large nodes (16 cores); and finally with all available nodes
i.e for a total of 48 cores.

Nodes N NB P Q Gflops Effi-
(cores) Theo. Prac. ciency

Small (32) 84000 80 4 8 204.8 91 44.4%
All (48) 84000 80 2 24 313.6 77 24.6%

Large (16) 40000 80 2 8 108.8 25 23.0%
Table 2. Summary of the best results obtained with Acovea in the
three computing nodes configurations.

The peak results are summarized in table 2 (see table 5 for
the HPL parameters used in the first phase to attain them).
The default values generally correspond to those proposed as
reasonable starting points for tuning by the HPL documenta-
tion. Experience with each computing node configuration is
discussed in the following subsections.

3.2.1. Tuning using small nodes only
Acovea was used to explore HPL’s parameter space using

a problem size of 12,000. This problem size was chosen as
a compromise between the need to keep run-time for each
test low, and the desire to obtain results that would extrapo-
late to large problems. As illustrated in Figure 4, the initial
generation of tests had an average run-time of 33.3564 sec-
onds, improving to 23.0882 seconds after twenty generations
(4,000 tests of differing parameter combinations), with a best-
of-best result of 22.59 seconds.
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Figure 4. Acovea and HPL evaluation (using small nodes only).

In the second test phase, the parameters previously ob-
tained were used to determine performance for problem sizes
ranging from 4,000 to 88,000. As figure 4 shows, a peak of
90.98 Gflops was achieved with a problem size of 84,000.
No result was obtained for the final problem size, as it re-
quired more memory than each node could offer, and conse-
quently ran very slowly due to heavy paging. The benchmark
figure obtained with the parameters suggested by Acovea is
5% better for the N = 64,000 case than that initially ob-
tained by hand-tuning. An examination of table 5 shows that
Acovea suggested that four parameters – NBMIN, DEPT H,
SWAPPING and U – should be changed from their de-
fault values. No parameter was reported as responsible for a



statistically-significant worsening of fitness by Acovea. Mon-
itoring during the benchmark run, shown in figure 5, revealed
that user-mode CPU utilization on each node was generally
above 90%, dropping to around 80% at the end phase of each
benchmark run. Increasing performance with larger problem
sizes may be explained by the fact that the end phase accounts
for a smaller proportion of run-time as problem size grows.
The figure also shows that network traffic is strongly corre-
lated with system-mode CPU time, and is an order of mag-
nitude below that which would saturate the cluster’s gigabit
Ethernet interconnect. It is possible that performance figures
could be slightly improved if network traffic were less expen-
sive in terms of system CPU cycles. This might be achieved
by enabling the use of “jumbo frames”, so cutting the number
of packets required to transfer a given volume of data. Further
studies (not shown) suggested that most of the packets on the
interconnect were frames of maximum length.

Figure 5. CPU and network use (using small nodes only).

Figure 4 shows that performance is still rising as the prob-
lem size reaches 84,000. Testing could not usefully proceed
beyond this point because, as figure 6 shows, memory re-
quirements on each node rose from just under 4GB in the
N = 84000 case to around 7GB for N = 88000. As each node
has 4GB of physical memory, heavy paging occurred, cutting
the amount of time that each CPU spent in user mode work-
ing on the problem. It is almost certain that a better bench-
mark score could be obtained if per-node memory were in-
creased. A rough linear extrapolation suggests that equipping
each node with its maximum of 8GB of RAM would allow
the N = 88000 case to run without paging, taking one hour
twenty minutes of run-time and attaining 91.5 Gflops.

Figure 6. CPU and memory use (small nodes configuration).

3.2.2. Tuning using large nodes only
This time, Acovea was used to explore HPL’s parameter

space using a reduced problem size of 8,000. As illustrated
in Figure 7, the initial generation of tests had an average run-
time of 20.8843 seconds, improving to 16.5834 seconds af-
ter twenty generations, with 15.98 seconds as the best-of-best
result. In the second phase, the best-of-best parameters previ-
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Figure 7. Acovea and HPL evaluation (using large nodes only).

ously obtained were used to determine performance for prob-
lem sizes ranging from 2,000 to 40,000. As figure 7 shows,
a peak of 25.74 Gflops was achieved with a problem size
of 40,000. This problem size resulted in around 6.3GB of
memory being used on each node. An examination of table
5 shows that Acovea suggested that seven parameters – P,
NBMIN, PFACT , DEPT H, SWAPPING, L1 and U – should
be changed from their default values. Of these, Acovea re-
ported that only three had produced statistically-significant
improvements in fitness (P, DEPT H and U). The change of
P from four to two (and hence of Q from four to eight) is in-
teresting in that it appears to produce a better match to two
nodes, each having eight cores, than the default, although the
results were no better than those for the hand-tuned four-by-
four configuration. No parameter was reported to produce a
statistically-significant worsening of fitness. Observation us-
ing Ganglia showed how the genetic algorithm tuned perfor-
mance by reducing the amount of network traffic generated
(and hence system CPU time used) with each succeeding gen-
eration — see the circled areas in figure 8.

Network traffic while running benchmarks on the large
nodes had a similar profile to that for the small nodes shown
in figure 5, but peaked at six MB/sec per node rather than



Figure 8. Network traffic and CPU use (large node config.)

ten. Presumably, much network traffic had been replaced by
in-memory communication within each node2. Unlike the
small nodes, the large nodes had clearly reached the limit of
their performance before the test was complete, despite hav-
ing slightly more powerful processors than the small nodes.
One can speculate that the reason for this is the considerably
slower memory (see table 4) in the large nodes. Equipped
with 32GB of memory each, the large nodes could have run
problems as large as the N = 88,000 case. However, no prob-
lem larger than N = 40,000 was tried, as run-time would
clearly have been excessive and no gain in performance was
expected.

3.2.3. Tuning using all nodes
Here also Acovea was used to explore HPL’s parameter

space using a problem size of 8,000. As illustrated in Fig-
ure 9, the initial generation of tests had an average run-time of
30.1619 seconds, improving to 21.5308 seconds after twenty
generations, with 9.64 seconds as the best-of-best result.

The best-of-best parameters were used to determine perfor-
mance for problem sizes ranging from 4,000 to 84,000. Fig-
ure 7 show that a peak of 77.83 Gflops was achieved with a
problem size of 80,000. It is important to note that HPL seems
to be unable to take advantage of the extra processing power
available when all nodes are used: the peak performance is
78 Gflops versus 91 using small nodes only. This may be an
indication that the benchmark’s algorithm is suited to homo-
geneous system configurations. In addition, compared to the
previous experiments, it can be seen in Figure 9 that conver-
gence is slow, and has not been achieved after twenty gener-
ations: the best-of-best result is considerably better than the
final generation average.

Test run-times were very widely distributed: Figure 10
compares the spread of run-times for the all-node case with
those for the small and large nodes only. The latter show well-
defined peaks and have almost no members running for more
than 40 seconds; in contrast, the all-nodes case shows two
small peaks, and has many outliers with very long run-times.
Nevertheless, Acovea suggested that five parameters — P,
NBMIN, BCAST , DEPT H, and SWAPPING — should be
changed from their default values. Of these, P, BCAST , and
SWAPPING were reported to produce statistically significant
improvements in fitness.

2Across the cluster, peak traffic was 160MB/sec for small-node bench-
marks, and just 12MB/sec for large.
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Figure 9. Acovea and HPL evaluation (using all nodes).
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The choice of P = 2, and hence Q = 24, is interesting. Ac-
cording to [14], “HPL prefers a 1 : k ratio, with k in [1 . . .3]”.
P = 2,Q = 24 is a long way from meeting this criterion, yet
an examination of the log files for tests having short run-
times shows that it was a frequent choice. It is unlikely that
hand-tuning would have discovered this possibility, showing



that a GA can be useful in arriving at unusual yet success-
ful parameter values. Finally, Figure 9 suggests that, unlike
the small-nodes case, all-nodes performance has topped out at
the largest problem sizes: the figure for N = 84000 is slightly
below that for N = 80000. It could be that the slower large
nodes are making the small nodes wait for results, so reduc-
ing performance.

3.3. Further Improvements
Examining the results presented in §3.2., it can be seen that

the value suggested by Acovea for NB, the blocking factor,
was 80 in every case. This is the default value set both in the
Acovea configuration files and the wrapper for xhpl. Two pos-
sible explanations are as follows: either NB = 80, suggested
as a good starting value by the initial tests described in §3.1.,
is indeed the optimum value; or there is a better value, but,
for some reason, Acovea did not find it.

To discover which was the case, a series of trials was run on
the small nodes using the best-of-best parameters suggested
by Acovea in §3.2.1. but with a problem size N = 8000 and
varying NB from 20 to 224. The results, depicted in figure
11, clearly show sharp discontinuities at multiples of 72, all
of which giving peaks in performance. Tests for a problem
size of 84000 with NB∈ {72,144,216} were then run, giving
the results shown in table 3. Of these, the result for NB = 144,
111.6 Gflops, was the best achieved so far.
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Figure 11. Result of varying NB over wide range (small nodes)

The better results presented above raise two questions.
Firstly, does the existence of a peak in performance of NB =
72 for a problem size of 8,000 imply that there is a peak for
the same value of NB for the much greater problem size of
84000? Secondly, why did Acovea not find any of the peaks,
despite being allowed to vary NB from 36 to 256?

To address the first question, a series of tests was run on
the small nodes only, varying NB from 64 to 96 and N from
8,000 to 84,000. The resulting surface appears as in figure
12, and shows clearly that the location of the discontinuity

NB Performance Efficiency
72 107.2 Gflops 52.3%

144 111.6 Gflops 54.5%
216 111.0 Gflops 54.2%

Table 3. Performance for N = 84000 and NB multiple of 72.

for NB = 72 does not vary with N. This begins to address the
issue raised in §3.2. above concerning whether the parameters
that are best for small problems are also best for large. No
tests were run to characterize the other discontinuities; their
behaviour was presumed to be similar.
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Figure 12. Result of varying NB and N (over small nodes).

The answer to the second question is simple: Acovea could
not find the peak at NB = 72 because it was not allowed to:
its parameter file allowed NB to vary in steps of sixteen away
from a default value of 80. The first step below 80 was 64,
a value that gave a very poor performance. The GA tried this
figure on a few occasions, but the individuals having this gene
tended not to reproduce because of their poor fitness. (The
first step above 80, 96, produced only slightly worse results
on average than the default, and so was explored more of-
ten.) To give Acovea a chance to find a peak, another run was
tried, allowing NB to vary from a default of 36 up to 234 in
steps of nine. Results were poor compared to the first run:
in most tests, Acovea did not specify a value for NB, result-
ing in the harness’s default value of 80 being used; 36 was
specified for some tests, giving worse results than the default
on average; and a few tests specified 45, giving worse results
still. No other values were tried. A first-generation fitness of
39.7891 seconds came down to 28.4151 by the twentieth –
not as good as than the first run’s final figure of 23.0882 sec-
onds. A third run of Acovea returned the default for NB to 80,
but allowed variation in steps of eight rather than the sixteen
of the original test. The peak for NB = 72 was found within
a few generations using these parameters, and the final aver-
age fitness of 20.3134 seconds improved on the correspond-
ing figure of 23.0882 seconds achieved in the test of §3.2.1.
Figure 13 shows these results. The returned “optimistic” op-



tions had also changed, with NB replacing SWAPPING on
the original list.
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Figure 13. Acovea results with revised parameters.

The best-of-best parameters were used to run benchmarks
with problem size N = 84000 and NB ∈ {72,144,216}. The
results were similar to those shown in table 3 and gave the
highest performance to date: 111.7 Gflops.

4. CONCLUSION & PERSPECTIVES
This paper has addressed the issue of extracting the best

adapted parameters for the HPL reference benchmark. Ad-
justment of the seventeen tuning parameters to achieve maxi-
mum performance is a time-consuming task that must be per-
formed by hand. The use of a genetic algorithm is proposed
here to manage this task with individuals corresponding to an
HPL run. Indeed we do not provide here a description of a
particular version of a GA. The Acovea framework has been
used to validate the approach over a Beowulf cluster com-
posed of heterogeneous resources: a majority of so-called
“small” nodes and two “large” nodes. In particular, starting
from a hand-tuned performance of 84 Gflops, it was possible
to attain the peak performance of 111.6 Gflops on the cluster
using a set of parameters determined nearly automatically by
Acovea. The main contribution here is not the performance
result in itself (obtained using the small nodes only as they
seem better to suit the execution of the HPL benchmark), but
rather the method used to reach it. This work opens the pos-
sibility of creating a fully-automatic benchmark tuning sys-
tem based on genetic programming. However, an analysis of
the impact of the GA configuration (cross-over and mutation
rate, number of generations etc.) on parameter determination
efficiency remains to be made. Additionally, future research
will include evaluation of alternative GA frameworks, such as
ParadisEO [3], or MALLBA [2].
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Appendix

Node # Dell Processor cores Total Memory
type model /node total peak speed (per-node)

Frontend 1 SC1425 1 Xeon Dual-Core 3.2GHz – – – 4GB DDR-2 400MHz
NFS 1 PE2450 1 Xeon – – – 4GB DDR-2 400MHz
small 16 PE850 1 Pentium D 3.2GHz 2 32 204.8 Gflops 4GB DDR-2 667MHz
large 2 PE6850 4 Pentium Xeon 3.4GHz 8 16 108.8 Gflops 32GB DDR-2 400MHz

Total on computing nodes: 48 313,6 Gflops 128 GB

Function Package Version See also
Operating system Debian 4.0 “etch” www.debian.org

Linux
Kernel

front-end – 2.6.18
small nodes – 2.6.22 www.kernel.org
large nodes – 2.6.23.8

C/C++ compiler gcc/g++ 4.1.2 gcc.gnu.org
Benchmark HPL 1.0a www.netlib.org/benchmark/hpl

Linear algebra
library/scientific li-
brary

ATLAS/CBLAS 3.6.0 math-atlas.sourceforge.net

Message passing interface OpenMPI 1.1 www.open-mpi.org
GA framework Acovea 5.1.1 www.coyotegulch.com

Table 4. Hardware and software configuration of the cluster for relevant elements at the time of the experiments.

Parameter Default Configuration Description (see [14])
(in HPL.dat) value Small Large All

procs 32 32 16 48 Number of processes (nodes)
N 8000 12000 8000 8000 Problem size

NB 80 80 80 80 Block size for matrix decomposition
PMAP 0 0 0 0 Process mapping (0=row-major, 1=column-major)

P 4 4 2 2 Process grid rows
Q 8 8 8 24 Process grid columns

T HRESHOLD 16 16 16 16 Error threshold for calculation check
PFACT 0 0 2 0 Panel factorization (0=left,1=Crout’s method, 2=right)
NBMIN 1 4 16 8 Recursive stopping criterion in panel factorization
NDIV 2 2 2 0 Number of panels created on recursive split

RFACT 0 0 0 0 Recursion factor
BCAST 0 0 0 1 Communication broadcast method
DEPT H 0 1 1 2 Look-ahead depth during factorization
SWAP 2 2 2 2 Swapping algorithm (0=binary-exchange, 1=spread-roll, 2=mixed)

SWAPPING 64 32 32 64 Switching threshold for mixed swapping
L1 0 0 1 0 Upper triangle storage form (0=transposed, 1=untransposed)
U 0 1 1 0 Panel storage form (0=transposed, 1=untransposed)

EQ 0 0 0 0 Use equilibration? (0=no,1=yes)
Table 5. HPL parameters used in the first phase of experiments over the Acovea framework. italic font is used to express a non-default
value fixed for the benchmark’s run, while bold font illustrates a non-default value determined by Acovea.


